

Home Automation using Java

DRAFT User Manual

Written by: Dave Irwin (jhomenet@gmail.com)
Project webpage: http://jhomenet.sourceforge.net

Last updated: November 3, 2007

jHomeNet User Manual Page 5 of 42
Version 0.5.1

Copyright © 2002-2007 David Irwin. All rights reserved. This software is
published under the terms of the GNU General Public License, a copy of which
has been included in the LICENSE.txt file shipped with the jHomeNet distribution.

jHomeNet User Manual Page 6 of 42
Version 0.5.1

Acknowledgements

jHomeNet User Manual Page 7 of 42
Version 0.5.1

Document revisions

Doc version Date Description
0.1 12/20/2006 Updated for version 0.1 of the jHomeNet server
0.2 2/11/2007 Updated for version 0.2 of the jHomeNet server
0.3 3/15/2007 Updated for version 0.3 of the jHomeNet server
0.4 5/28/2007 Updated for version 0.4 of the jHomeNet server
0.5 10/25/2007 Updated for version 0.5.3 of the jHomeNet

server.
0.5.1 11/3/2007 Updated for version 0.5.3 of the jHomeNet

server.

jHomeNet User Manual Page 8 of 42
Version 0.5.1

Table of Contents

SECTION 1 - INTRODUCTION ...10

SECTION 1.1 – DESCRIPTION ..10
SECTION 2 – SYSTEM REQUIREMENTS..11

SECTION 2.1 – SOFTWARE ENVIRONMENT ...11
Section 2.1.1 – Runtime Environment..11
Section 2.1.2 – Operating Systems ...11
Section 2.1.3 – SQL server ...11

SECTION 2.2 – HARDWARE ENVIRONMENT ...11
SECTION 3 – SYSTEM CONFIGURATION...12

SECTION 3.1 – BUILDING THE JHOMENET SUITE FROM SOURCE ...12
SECTION 3.2 – SQL SERVER CONFIGURATION ...12
SECTION 3.3 – INSTALLING NETWORK DRIVERS ..14

Section 3.3.1 – 1-Wire...14
Section 3.3.2 – X10...15

SECTION 4 – SERVER CONFIGURATION...16

SECTION 4.1 – SERVER CONFIGURATION FILES ..16
SECTION 4.2 – SERVER STARTUP FILES ..18

SECTION 5 – STARTING THE SERVER ..19

SECTION 5.1 – RUNNING THE SERVER ...19
SECTION 6 – SERVER FEATURES ...21

SECTION 6.1 – SENSOR RESPONSIVE PROGRAMMING ...21
Section 6.1.1 – Conditions...21
Section 6.1.2 – Expressions ..22
Section 6.1.3 – Responses..22
Section 6.1.4 – Triggers ..23
Section 6.1.5 – Plans ..24
Section 6.1.6 – SRP Control Panel..25

SECTION 6.2 – PLUG-INS..26
Section 6.2.1 – Console Plug-ins...27

SECTION 7 – DEVELOPMENT ENVIRONMENT ..29

SECTION 7.1 – MY SETUP ..29
SECTION 7.2 – OTHER ISSUES ..32

SECTION 8 – FAQS..34

SECTION 8.1 –FAQS ...34
SECTION 9 – SAMPLE CONFIGURATION FILES............. ...35

SECTION 9.1 – SERVER.CFG.XML ..35
SECTION 9.2 – HARDWARE.CFG.XML..36
SECTION 9.3 – X10.CONF ...38
SECTION 9.4 – X10-CONTAINERS.CFG.TXTF..39
SECTION 9.5 – SENSOR-RESPONSIVE.CFG.XML ...39
SECTION 9.6 – HIBERNATE.CFG.XML ..39

RESOURCES & LINKS.................................. ...42

APPENDIX A – JHOMENET ANT BUILD43

jHomeNet User Manual Page 9 of 42
Version 0.5.1

Build configuration...43
Ant tasks...43

APPENDIX B – ACRONYMS & OTHER INFORMATION45

Acronyms..45

jHomeNet User Manual Page 10 of 42
Version 0.5.1

Section 1 - Introduction

Section 1.1 – Description
jHomeNet is a suite of open-source software applications that when used with
hardware sensors and devices can be used to help monitor and automate
systems around your house. Currently the jHomeNet software suite supports
Dallas Semiconductor’s 1-Wire hardware along with X10 hardware. Future
releases of the jHomeNet software suite may support additional hardware.

The suite of software currently includes the following packages:

• jHomeNet commons library: Provides common tools.
• jHomeNet server: Is responsible for maintaining and managing hardware,

hardware polling, and the sensor responsive system. Also provides
hardware, data, and sensor responsive persistence functionality.

• jHomeNet UI: Provides the user interface classes and tools.
• jHomeNet plugins: A collection of jHomeNet plugins that can be added to

the jHomeNet server to provide additional functionality without having to
recompile the server.

The jHomeNet server currently provides an operator with a command line
interface (CLI) for interacting with the server. However, through the server CLI an
operator may also open the jHomeNet graphical user interface (GUI). The GUI
provides the same functionality that the CLI does but graphically.

In the future, a jHomeNet client will also be developed that provides an operator
the same functionality with the added ability to connect to the server remotely.
The client GUI would be nearly identical to the server GUI but could allow remote
operators to connect using a TCP/IP based network connection.

jHomeNet User Manual Page 11 of 42
Version 0.5.1

Section 2 – System Requirements

Section 2.1 – Software Environment
The purpose of this section is to provide information on the required software
environment in order to run the jHomeNet software suite.

Section 2.1.1 – Runtime Environment
To run the jHomeNet software suite (either the jHomeNet server or the jHomeNet
client), a compliant Java Runtime Environment (JRE) version 1.5 must be
installed and properly configured.

Section 2.1.2 – Operating Systems
Any operating system that supports a version 1.5 JRE should be capable of
supporting the jHomeNet server and client. The necessary 1-Wire and X10
communication drivers will also be required if external sensors are to be used.

As of this writing, the jHomeNet software suite has only been developed and
tested on a Windows 2000 and XP platform, however there is no reason that the
jHomeNet suite shouldn’t be able to run on a Linux/Unix platform as well.

Section 2.1.3 – SQL server
In addition to the JDK and/or JRE, the jHomeNet server also requires a compliant
SQL server. As of this writing, the MySQL version 4.1 has been used for
development and testing. The free MySQL server is available from MySQL’s
website http://www.mysql.com.

The only manual configuration to the database that is currently required is the
creation of the jHomeNet database. Create a new database called jhomenet_db .
You may leave the database empty as the Ant init-db tool will create the
necessary database tables and keys.

For database maintenance and configuration, MySQL’s administration tools
along with a number of third party software applications exist. For example,
phpMyAdmin along with an Apache web server could be used. Other SQL front
ends used during the development process include MySQL Front
(http://www.mysqlfront.de/).

Section 2.2 – Hardware Environment
The current jHomeNet software suite supports both Dallas Semiconductor’s 1-
Wire network and hardware and X10 network and hardware. For specific details
on installing the necessary communication drivers refer to Section 3.3.

jHomeNet User Manual Page 12 of 42
Version 0.5.1

Section 3 – System Configuration
The purpose of this section is to provide instructions on building, deploying and
configuring a jHomeNet server and client along all of the necessary third-party
dependent software applications and drivers.

The jHomeNet suite comes with binary executables as part of the distribution so
building the binary executables from the sources should not be required.
However, the jHomeNet suite still needs to be configured in order to run. You
may skip Section 3.1 if you’re not interested in building the jHomeNet suite from
the sources.

Section 3.1 – Building the jHomeNet Suite from Sour ce
Each jHomeNet package includes an Apache Ant build file for building the
package’s source files into executable class files. If Ant is not already installed,
download it from the following website: http://ant.apache.org/. (The installation
and configuration of Ant itself is beyond the scope of this document. See the
Apache Ant website for further details.)

As noted, there are several jHomeNet packages that make up the jHomeNet
suite of tools. Some packages have dependencies on other packages. In
particular, the following is a list of the jHomeNet package dependencies:

Package Name Package Dependencies
jHomeNet commons None
jHomeNet UI jHomeNet commons
jHomeNet server jHomeNet commons, jHomeNet UI

When a dependent package is rebuilt it must be copied into the library folder (lib
in most cases) of the packages that depend on it. Fortunately, there is an Ant
task included in the jHomeNet server’s build.xml file that automates this
process. In particular, to build the jHomeNet commons, UI, and server source
packages and copy the necessary built package jar files to the necessary folders,
run the build-suite task (or the build-clean-suite to delete any existing
class files before building).

Refer to Section 8 (Development Environment) for more details on the steps to
properly setting up a development environment and build the jHomeNet suite.
For a list of all other available jHomeNet Ant tasks and other information, refer to
Appendix A.

Section 3.2 – SQL Server Configuration
The jHomeNet server requires an SQL compliant database to operate. This
section describes the steps necessary to setup and configure an SQL database
for use with a jHomeNet server.

jHomeNet User Manual Page 13 of 42
Version 0.5.1

The jHomeNet server comes with support for persisting information in a database
using Hibernate, an object/relational (O/R) tool available from
http://www.hibernate.org.

Install a SQL compliant database server (as previously noted, MySQL has been
used for development and testing). After installing and setting up the database
server, the jHomeNet database has to be created and initialized. Fortunately, an
Ant script has been included with the server’s build.xml file that both creates
the jHomeNet database and creates the necessary tables. However, before
running the task, both the Hibernate and build.xml files need to be updated
with the appropriate SQL server connection information.

To configure the build.xml to connect to the database server, you’ll need to
modify the default.properties file located in the root directory. Below is a
code example showing a default configuration:

Code Listing – The default.properties SQL properties

To configure Hibernate to connect to the database server, you’ll need to modify
the Hibernate configuration file, called hibernate.cfg.xml , located in the
/resources/conf/ folder. Here you’ll need to enter the corresponding Hibernate
dialect information, the appropriate SQL server driver, and database URL,
username and password. For more information refer to the Hibernate
documentation. Below is a code example from a default Hibernate configuration
file.

Code Listing – The Hibernate hibernate.cfg.xml database properties

After updating both the default.properties and hibernate.cfg.xml
configuration files, you’re ready to create and initialize the jHomeNet database.
Fortunately, this process has been automated by running the server’s init-db

<property name="hibernate.dialect"> org.hibernate.d ialect.MySQLDialect </property>
<property name="hibernate.connection.driver_class"> com.mysql.jdbc.Driver
</property>
<property name="hibernate.connection.url"> jdbc:mys ql://localhost/jhomenet_db
</property>
<property name="hibernate.connection.username">admi n</property>
<property name="hibernate.connection.password">admi n</property>

SQL properties

sql.driver = com.mysql.jdbc.Driver
sql.url = jdbc:mysql://localhost/
sql.userid = admin
sql.password = admin
sql.dbname = jhomenet_db

jHomeNet User Manual Page 14 of 42
Version 0.5.1

Ant task found in the server’s build.xml file. This task, as described in Appendix
A, will create the necessary database tables, indexes, etc. necessary for the
jHomeNet server. When this task completes, verify that the tables have been
added to the database.

Section 3.3 – Installing Network Drivers
The purpose of this section is to provide a general overview of the hardware
driver installation steps. Please refer to the specific hardware driver vendor
documentation for detailed information.

Section 3.3.1 – 1-Wire
The 1-Wire communication network was designed by Dallas Semiconductor and
allows small sensors and devices to be interconnected using a very simple
communication bus. A 1-Wire network provides half-duplex bidirectional
communications between a host/master controller and one or more slaves or
hardware objects over a single 1-Wire line. A 1-Wire network requires just three
things:

• 1-Wire hardware devices
• Copper plant consisting of either telephone or CAT-5 cable
• A 1-Wire host/master controller for interfacing between a computer and

the copper plant

1-Wire has several advantages in that it is extremely easy to deploy and
configure and add additional hardware devices. Both power and data
communication for slave hardware devices are transmitted over the single 1-Wire
line. Each slave hardware device on a 1-Wire network has a unique unalterable
(ROM) 64-bit serial number (or address) that will never be repeated by another 1-
Wire hardware device.

For the jHomeNet server to communicate with deployed 1-Wire hardware
devices, a host/master controller must be installed on the jHomeNet server.
Currently there are both serial and USB host/master controllers available. The
host/master controllers require software drivers to be installed. For Windows
platforms, there is a choice of either the TMEX native drivers or the RXTX serial
communications API. The TMEX native drivers are available on the iButton
website at the following address: http://www.maxim-
ic.com/products/ibutton/software/tmex/index.cfm. The latest version, version
4.00, contains the necessary drivers and support libraries for each of the 1-Wire
host/master controllers available from Dallas Semiconductor Maxim, including
the 1-Wire USB adapters (DS9490). The current release of 1-Wire drivers
supports Microsoft 32-bit Windows TM including Windows XP, ME, 2000, 98, NT
(no USB support), and 95 (no USB support). The installation comes as an
executable file and requires no additional configuration beyond running the
installation application.

jHomeNet User Manual Page 15 of 42
Version 0.5.1

All other platforms will require the RXTX API for communicating with the
DS9097U serial port adapter. Visit the Dallas Semiconductor Maxim
OneWireViewer website to download the latest RXTX driver files:
http://www.maxim-ic.com/products/ibutton/software/1wire/OneWireViewer.cfm.
You can also visit the RXTX website at http://www.rxtx.org/ for updates or current
releases. Consult the install and readme files included as part of the distribution
for directions on installing the drivers.

Section 3.3.2 – X10
Like a 1-Wire network, an X10 network is an extremely simple network to deploy
and configure. An X10 network communicates with hardware devices by making
use of existing AC power lines. While X10 provides a number of different
capabilities, the for the jHomeNet system it is primarily used with on/off switches.

In order to communicate with the X10 network, the jHomeNet server uses a
standard serial connection to an X10 gateway. The Java COMM API software
driver, version 2.0, available from Sun has been used.

The most recent release of the COMM API from Sun (version 3.0, update1) does
not include support for the Windows platform. Specifically, the latest release only
supports Solaris x86, Solaris 8 & 9 (Sparc) and Linux. To download the latest
COMM API from Sun, follow the http://java.sun.com/products/javacomm/ link.
The older version 2.0 Comm API from Sun is still available for download at the
following location:
https://jsecom8a.sun.com/ECom/EComActionServlet;jsessionid=9C14E7EB934D
26FBA3D49FC5284D2A9B. As mentioned in the 1-Wire driver installation
section, other options include serial drivers available from RXTX at the following
site: http://www.rxtx.org.

Installing the COMM API has proven to be difficult as the directions included with
the library don’t always work. The following is a set of steps previously used to
install the COMM API version 2.0 on a Windows TM 2000 machine.

1. Unzip the contents to a temporary folder.
2. Copy the win32com.dll file to <JRE>\bin folder where <JRE> is the location

of the Java Runtime Environment installation.
3. Copy the javax.comm.properties file to the <JRE>\lib folder.
4. Copy the comm.jar file to the <JRE>\lib\ext folder.

This installation does not require any edits to the classpath . It should be noted,
however, that any JRE updates may require a new installation of the COMM API
files.

jHomeNet User Manual Page 16 of 42
Version 0.5.1

Section 4 – Server Configuration
The purpose of this section is to provide an overview of the jHomeNet server
configuration required prior to starting the jHomeNet server.

Section 4.1 – Server Configuration Files
The release includes a default set of configuration files in the <jhomenet-server

folder>\resources\conf folder.

jhomenet.cfg.xml

This is the main server configuration file. The file is a standard XML file using
key/value properties (property name = property). A list of the currently used
property names and acceptable inputs is outlined below:

XML node or attribute Description
<jhomenet-config> node The main configuration node. All other nodes

must be child of this node.
<startup-config> node Node that is used to define server startup

parameters.
<console> node A child node of <startup-config> . This node

defines the console properties.
display attribute An attribute of the <console> node. Set to true to

display the console at server start. Set to false to
not display the console at server start.

<hardware-polling> node A child node of <startup-config> . This node
defines the hardware polling startup properties.

start attribute An attribute of the <startup-config> . Set to true
to start hardware polling at server start. Set to
false to disable hardware polling at server start.

<hardware-config> node A child node of <jhomenet-config> . This node
defines hardware configuration properties.

type attribute An attribute of the <hardware-config> node. Set
to xml for an XML file based hardware
configuration. Set to txt for a text file based
hardware configuration.

filename attribute An attribute of the <hardware-config> node. Use
this to set the XML or text hardware configuration
filename to be used.

<authentication-config>

node
A child node of <jhomenet-config> used to set
authentication configuration properties.

<type> <authentication-config> sub-node used to
indicate an authentication type section. Define
the authentication service type to be used for
user login. The software currently supports three

jHomeNet User Manual Page 17 of 42
Version 0.5.1

XML node or attribute Description
types of authentication services: JAAS (use
jaas), JDBC (use jdbc), and a simple service
(use simple). The property may not be left blank.

<network-config> A child node of <jhomenet-config> used to
indicate a network configuration section.

<firewall-enabled> A child node of <network-config> used to
indicate whether the network is firewall enabled.
Acceptable input values include true or false .

<workqueue-config> A child node of <jhomenet-config> used to set
work queue configuration properties.

<threadsize> A child node of <workqueue-config> used to set
the number of threads allocated to the work
queue. Valid values: integers greater than 0.

Hardware.cfg.xml

This file defines the hardware driver names (along with any necessary driver
configuration filenames) and the types of hardware available to the server. This
file shouldn’t require editing unless additional types of hardware are added.

Included with the distribution are a set of dummy hardware configuration files that
allows a user to run a server without actually having a 1-Wire or X10 network
installed. To use this dummy hardware in the jhomenet.cfg.xml configuration
file change the hardware configuration file reference from hardware.cfg.xml to
hardware_test.cfg.xml and make sure that the test hardware configuration file
is present. You will need to restart the server for the changes to take place. This
will start the server with a number of dummy hardware sensors and devices.

X10 configuration file (i.e. x10.cfg.txt)

The current X10 software is unable to automatically detect the X10 hardware
gateway to the X10 communication network. Therefore it is necessary to instruct
the jHomeNet application what communication interface to use to connect to the
X10 network. The x10.cfg.txt file is used to define the X10 network interface
parameters. Since the current version of the jHomeNet application only supports
a serial X10 interface the only valid parameter is the serial port to be used.

X10 hardware configuration file (i.e. x10-containers.cfg.txt)

The X10 network is unable to scan for hardware unlike the 1-Wire network. Use
this file to define the available X10 hardware.

Others

jHomeNet User Manual Page 18 of 42
Version 0.5.1

The remaining configuration files should not require any editing unless further
development is required.

Included with the distribution are a number of test configuration files. These files
can be used to setup and start the server without requiring an actual 1-Wire or
X10 communication network.

Section 4.2 – Server Startup Files
When the server’s console session is started, it has a built-in feature to look for a
.login file in the <root folder>\resources\login folder. This file is optional
and is not required to start the server or a console session. If this .login file is
found, the contents of this file are executed as if an user were entering console
commands. All of the commands are executed in the background (i.e. as if the
“&” were included as a command line argument).

The default .login file contains a command to start the main jHomeNet GUI.
Other console commands may be added to this file. Each command should be
placed on a new line. Comments may be added to this file using the # symbol.
Refer to the code listing below for the default .login file contents.

Code Listing – Sample .login file

The jHomeNet server console login script. This fi le is called
when the main jHomeNet server console is opened. Known console
commands may be included in this file along with space separated
command line parameters.

Open the main window
main-window

jHomeNet User Manual Page 19 of 42
Version 0.5.1

Section 5 – Starting the Server
This section provides information on starting the jHomeNet server.

Section 5.1 – Running the server
There are a number of available script files included with the jHomeNet
distribution to enable easy server startup. For Windows, use the included
server_jar.bat batch file (future releases will also include startup scripts for
Linux). Note that if you’re developing new features in the jHomeNet application
you can use the server_dev.bat file that is automatically created when the
project is built..

As startup, the server goes through a number of different boot procedures during
startup. The boot process displays a splash screen that provides server
initialization feedback. See Figure 5.1 below for an example splash screen.

Figure 5.1 – Sample jHomeNet server splash screen

When the server initialization is complete, a local console session will be started.
This console provides a basic interface to the server for the user. The user is first
prompted for a username and password. By default, the administrative username
and password is admin/admin respectively.

As discussed in Section 4.2, after a successful user login the console session
startup process will look for an available .login file. If the .login file is found
the commands in this file are executed as if the user entered them at the
console. The default .login file has a command that starts the main GUI.

jHomeNet User Manual Page 20 of 42
Version 0.5.1

Once the user has successfully logged into the jHomeNet server, they may enter
a number of different commands. For a listing of available jHomeNet console
commands, type help at the prompt. See Figure 5.2 below for an example
console.

Figure 5.2 – Example jHomeNet server console

jHomeNet User Manual Page 21 of 42
Version 0.5.1

Section 6 – Server Features
The purpose of this section is to provide an overview of the features included
with the jHomeNet server.

Section 6.1 – Sensor Responsive Programming
Sensor responsive programming (SRP) is a feature that adds dynamic control
functionality to the jHomeNet suite of applications. Without SRP, jHomeNet is just
a data acquisition and manual control program. Still quite useful, but even more
so when SRP is included.

Section 6.1.1 – Conditions
The first thing you’ll probably want to create in developing your SRP system is a
condition. A SRP condition object encapsulates a logical conditional statement.
As an example, the simplest condition is simply a Boolean condition that has a
desired state equal to either true or false . That is, a user can set the desired
state and when the condition is evaluated it simply returns the desired state. A
more practical condition might make use of a temperature sensor and could be
used to check if the measured temperate is less than a certain test temperature.

The jHomeNet suite currently supports two types of conditions: single sensor
value based conditions (i.e. is a measured value greater than or less than some
test value) and two sensor difference value based conditions (i.e. is the
measured difference between two sensors greater than or less than a test value).

An operator may create a new
condition by right-clicking on the
Conditions node in the main
jHomeNet tree and selecting
either the New Sensor Condition
option or the New Difference
sensor condition option.
Selecting the former will open a
new sensor condition editor
window as seen in the figure at
left. Here a user creates a
unique condition name, selects
the desired sensor and I/O
channel, the operator (either
greater than or less than), the
test value and the test value

unit.

Alternatively, the user may choose to create a sensor difference condition.
Selecting the latter option will open the editor window as seen in the figure at
right. Again, the user creates a unique condition name but then must also select

jHomeNet User Manual Page 22 of 42
Version 0.5.1

two different sensors and their respective I/O channels, the difference value, the
difference value unit, and the test operator (either greater than or less than).

There’s also a Boolean
condition where the user
may set the desired state
that the condition will
return. This type of
condition is primarily used
for testing and
development.

In all instances when the
user clicks on the Save
button the condition is
permanently stored in the
jHomeNet database for
later use.

Users may edit existing conditions by selecting the condition tree object, right
clicking on the particular condition, and selecting the Edit option. This opens the
respective condition editor window which allows the user to edit some (but not
all) of the condition fields.

Section 6.1.2 – Expressions
An expression is really just a combination of one or more conditions using
Boolean operators such as AND, OR, or NOT. For example, an expression could
contain two conditions combined with the Boolean AND operator. In this case
both conditions must evaluate to true in order for the expression to evaluate to
true.

Section 6.1.3 – Responses
In addition to conditions, SRP allows the creation of responses. Responses are
what is executed when an expression is evaluated. The current jHomeNet
implementation has four types of responses:

• Message response: this type of response records a text message in the
jHomeNet log

• Event response: this type of response creates and records a new event in
the event logger

• Device response: this type of response allows a hardware device (such as
a switch) to be controller

• Email response: this type of response creates and sends an email with a
given subject and message

jHomeNet User Manual Page 23 of 42
Version 0.5.1

Each response type has a
different editor that allows a user
to create and customize the
responses.

To create a new response, right-
click on the Response node in
the Sensor Responsive tree on
the left side of the main
jHomeNet application. From
there a user may select one of
four response types as
highlighted above. At left is the
current email response editor. All
in all cases the user must enter a
unique response name. When
finished, click on the Save button.
This will permanently save the

response in the jHomeNet database for later use.

Users may edit existing responses by selecting the response tree object, right
clicking on the particular response, and selecting the Edit option. This opens the
respective response editor window which allows the user to edit some (but not
all) of the response fields.

Section 6.1.4 – Triggers
Triggers are used to define
how often an expression
should be evaluated. Triggers
are a very powerful feature
and provides a lot more
detailed control beyond
simply setting the trigger to
fire every 30 seconds.

To create a new trigger right-
click on the Triggers tree
object and select New. This
will open the trigger editor
window as seen to the right.

All triggers must have a
unique trigger name. Then
the user must select whether
to create a simple trigger or a
cron trigger. A simple trigger

jHomeNet User Manual Page 24 of 42
Version 0.5.1

allows the user to define the start and end time of the trigger (or no end time),
how many times the trigger should repeat (or to repeat indefinitely), and what the
interval should be between trigger firings. The cron trigger allows the user to
define a firing schedule using Unix like cron definitions. For example, this means
being able to create a firing schedule such as: "At 8:00am every Monday through
Friday" or "At 1:30am every last Friday of the month". Since the jHomeNet
application uses the Quartz scheduling library for all the SRP scheduling the cron
expression is simply passed to a Quartz CronTrigger object. The components of
a valid cron expression are beyond the scope of this document. Refer to the
Quartz documentation on CronTriggers for more information.

When finished creating the trigger, click on the Save button. This will
permanently save the trigger in the jHomeNet database for later use.

Users may edit existing triggers by selecting the trigger tree object, right clicking
on the particular trigger, and selecting the Edit option. This opens the trigger
editor window which allows the user to edit some (but not all) of the trigger fields.

Section 6.1.5 – Plans
A SRP plan is the glue that pulls everything together. In particular, a SRP plan
consists of an expression, a trigger, and a set of both on-true and on-false
responses. When a plan created and scheduled with the SRP manager, every
time the plan’s trigger fires the plan’s expression is evaluated. If the expression
evaluates to true then all of the on-true responses are executed. If the
expression evaluates to false then all of the on-false responses are executed.

To create a new plan, right-
click on the Plans tree object
and select New. This will open
the plan editor window as
seen to the left.

All plans must have a unique
plan name. A user may create
an expression but right-
clicking on the expression
textfield and may to choose to
clear the current expression or
insert expression elements
(where an expression element
can be a condition or a
Boolean operator such as
AND, OR, or NOT). A user
may also choose to enter
either an opening or closing

parenthesis.

jHomeNet User Manual Page 25 of 42
Version 0.5.1

After creating the expression the user may also select the desired responses to
be executed. In the left list are all the available responses. A user may select an
available response and then
click on the “>” button. The
user will be prompted
whether this should be
designated as an on-true or
on-false response. After
making a choice the
selected responses will now
be in the right list color
coded appropriately (green
for on-true responses, red
for on-false responses). At
right is the same plan editor
window with an on-true and
an on-false response.

When finished creating the
plan, click on the Save
button. This will permanently
save the plan in the
jHomeNet database for later use.

Users may edit existing plans by selecting the plan tree object, right clicking on
the particular plan, and selecting the Edit option. This opens the plan editor
window which allows the user to edit some (but not all) of the plan fields.

Section 6.1.6 – SRP Control Panel
Now that we’ve created all of these SRP responses and triggers and conditions
and plans, we need to be able to schedule and control the plans with the SRP
manager. This is done using the SRP control panel. To open the control panel,
select the Control Panel option from the Responsive drop down menu.

The control panel consists of two lists on the left: available SRP plans and
currently scheduled SRP plans. To schedule a plan with SRP manager select a
plan from the Available Plans list. This will automatically update the field on the
right side of the window. (Note that none of these fields are editable. If you want
to edit any of the plan’s features close the control panel and open the respective
editor.) Once a plan has been selected a user may then select the desired trigger
to use to control when and how often the plan’s expression is evaluated. A user

NOTE: Saving SRP plans in the jHomeNet database is not currently
supported. Look for future releases to add this sup port.

jHomeNet User Manual Page 26 of 42
Version 0.5.1

may also activate or deactivate a plan. Note that by default when plans are
created they are not set to active so a user must activate a plan otherwise its
expression won’t be evaluated when the respective trigger fires.

Once a plan has
been selected and
activated, a user
may test the plan
by clicking on the
Execute button.
This will cause the
plan’s expression
to be evaluated
and the
corresponding on-
true or on-false
response to be
executed as well.
It’s a way to test a
plan without
having to actually
schedule the plan
with the SRP
manager.

If the plan has
been tested it now

may be scheduled with the SRP manager. Select the desired trigger from the
drop down box and click on the Schedule button. Once this happens the plan will
move from the Available Plans list to the Scheduled Plans list on the left side.
The plan will also be scheduled with the SRP manager to be evaluated based on
the selected trigger. Scheduled plans may be unscheduled by selecting the plan
from the Scheduled Plans list and clicking on the Unschedule button. This will
unschedule the plan with the SRP manager and move the plan from the
Scheduled Plans list to the Available Plans list.

Section 6.2 – Plug-ins
The jHomeNet server has built-in plug-in support to enable third parties to add
additional functionality through plug-ins. In particular, the latest release of the
jHomeNet server software includes plug-in support to allow third parties to add
additional CLI commands. Additional plug-in support may be added in future
releases of the software. The purpose of this section is to provide a brief
overview of plug-in development and installation.

jHomeNet User Manual Page 27 of 42
Version 0.5.1

Section 6.2.1 – Console Plug-ins
The built-in plug-in support is enabled through the Java Plugin Framework (JPF)
open-source project.

To create a new command for the jHomeNet server console, create a new
command class that implements the jhomenet.server.console.command.Command
interface (refer to the API documents for further information). Alternatively, you
may also subclass the jhomenet.server.console.command.AbstractCommand
class to create a new command. The AbstractCommand class provides a few
additional utility methods that are helpful while printing information to the console.
You will need to include the jHomeNet server Jar file on your classpath in order
to successfully compile the new command.

Once the new command has been developed and compiled, a new console
command plugin.xml file needs to be developed in order to import the new
command into the jHomeNet server plug-in manager. Included with the
jHomeNet server distribution is a main console plug-in file, plugin.xml . Refer
below for the included plugin.xml main console plug-in file.

The main console plug-in ID is jhomenet.server.plugin.console , the plug-in
version is 1.0 , and the plug-in extension point is main-console-plugin . These
parameters will be required for any new console command plug-ins.

A sample new CLI command plug-in file is included below for a plug-in class
called jhomenet.addon.plugin.console.TestCommand . The new TestCommand
plug-in class extends the AbstractCommand class in the jHomeNet server
distribution.

<?xml version="1.0" ?>
<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manif est 0.5"

"http://jpf.sourceforge.net/plugin_0_5.dtd">
<plugin id="jhomenet.server.plugin.console" version ="1.0">
 <extension-point id="main-console-plugin">
 <parameter-def id="class" />
 </extension-point>
</plugin>

<?xml version="1.0" ?>
<!DOCTYPE plugin PUBLIC "-//JPF//Java Plug-in Manif est 0.5"

"http://jpf.sourceforge.net/plugin_0_5.dtd">
<plugin id="jhomenet.addon.plugin.console" version= "1.0">
 <requires>
 <import plugin-id="jhomenet.server.plugin.console " />
 </requires>
 <runtime>
 <library id="test-console-plugin" path="classes/" type="code" />
 </runtime>
 <extension plugin-id="jhomenet.server.plugin.conso le" point-id="main-console-
plugin"
 id="test-console-plugin">
 <parameter id="class" value="jhomenet.addon.plugi n.console.TestCommand"
/>
 </extension>
</plugin>

jHomeNet User Manual Page 28 of 42
Version 0.5.1

Once the new CLI command plugin.xml file has been developed and the class
files built, put them in the jHomeNet plugins folder. In particular, create a new
folder in the plugins folder that matches the extension plugin ID defined in the
plugin.xml file. In the case of the example above, a
jhomenet.addon.plugin.console folder was created. In that folder place the new
console command plugin.xml file and create a new classes folder. In the
classes folder place the new console command compiled Java class files. For an
example, refer to the folder layout below.

<root jHomeNet server folder>
|-- conf
|-- data
|-- images
|-- jhomenet
|-- lib
|-- persistence
|-- plugins
 |-- jhomenet.addon.plugin.console
 |-- classes
 |-- jhomenet
 |-- addon
 |-- plugin
 |-- plugin
 |-- console
 |-- TestCommand.class
 |-- plugin.xml
 |-- jhomenet.server.plugin.console
 |-- plugin.xml

jHomeNet User Manual Page 29 of 42
Version 0.5.1

Section 7 – Development Environment

Section 7.1 – My Setup
My biggest hope is that others will find the jHomeNet project useful and will want
to contribute to the project. This section explains the development environment
that I currently use to develop the jHomeNet suite of applications.

The jHomeNet suite actually consists of several smaller sub-projects (or
packages). At the time of this writing they include:

• jhomenet-commons
• jhomenet-ui
• jhomenet-server

These three sub-projects are required in order to run the jHomeNet suite. Lately
I’ve been working on a remote client for the jHomeNet suite. It’s in the jhomenet-
client sub-project.

The first thing required in order to develop the jHomeNet application is a Java
compiler. While the JRE is all you need to actually run the jHomeNet application
you’ll need a Java compiler to compile and build the project from source. I have
been using the latest 1.6 release of the JDK from Sun Microsystems. You’ll need
a 1.6 compliant JDK in order to compile and build the project. You can download
the latest JDK from http://java.sun.com.

I also use Apache Ant (http://ant.apache.org) to build the sub-projects. Each sub-
project includes a build.xml build file. I’ve been using version 1.7.0 of Apache
Ant.

I also have been using Eclipse as my IDE. The latest stable version that I have
been using is version 3.3.0. You can download the latest version from
http://www.eclipse.org. I haven’t installed any special plug-ins other than an XML
editor to help edit some of the XML configuration files but you can do this by
simply using Wordpad or VI.

All the source code for the jHomeNet project is freely available from the
Sourceforge website. In particular, I use Subversion as the software revision
control system. I primarily use two Subversion clients: Tortoise SVN
(http://tortoisesvn.tigris.org) which is a Windows Explorer client and Subclipse
(http://subclipse.tigris.org) which is an Eclipse Subversion plug-in client. Both I
have found work very well and I generally use them interchangeably.

Once you’ve got your favorite Subversion client installed it’s time to checkout the
jHomeNet projects (actually, you’ll be checking out as a minimum the three sub-
projects listed above). Unless you have developer access the Subversion

jHomeNet User Manual Page 30 of 42
Version 0.5.1

repository is read only but that won’t stop us from getting started. First, start by
creating a development directory. I usually like to have the following directory
layout although your personal preferences will dictate your particular setup:

c:\dev\ref
c:\dev\workspace

I typically like to keep copies of interesting projects in my ref folder and keep all
active projects (including the checked out source code for the jHomeNet sub-
projects) in my workspace folder.

Once you’ve chosen your working directory it’s time to checkout the actual
jHomeNet source. As provided on the Sourceforge website, access to the main
jHomeNet Subversion repository uses the following URL:

https://jhomenet.svn.sourceforge.net/svnroot/jhomen et jhomenet

We’ll start by checking out the jhomenet-commons
sub-project. For the purpose of this demonstration I’ll
be using the Tortoise SVN tools. In your working
directory right-click and you should get a drop down
window (see left). Select the “SVN Checkout…” option.

Next you’ll be presented with a checkout window that
allows you to enter the repository URL (see above)
and the desired output folder (for example,
C:\dev\workspace\jhomenet-commons). Enter the
repository URL from above and then click on the “…”
button next to the URL text field to choose the
jHomeNet sub-projects. Below is a screen shot of the
current list of available sub-projects. As you can see

there are several sub-projects beyond those listed above but for the time being
we’ll only be concerned with those three.

jHomeNet User Manual Page 31 of 42
Version 0.5.1

Select the jhomenet-commons and expand the folder. You’ll see three sub-folder:
branches, tags, and trunk. Click on the trunk folder and then click the Ok button.
In total the jhomenet-commons repository URL should now be set to:

https://jhomenet.svn.sourceforge.net/svnroot/jhomen et/jhomenet-
main/jhomenet-commons/trunk

Next click on the Ok button to actually checkout the source code. You may be
prompted that the folder doesn’t already exist. Click on the Yes button to
continue. The SVN client now takes care of checking out all of the source code,
images, and build files required to build the jhomenet-commons sub-project.
Depending on your network connection it may take a few minutes as there’s
about 9.3 MB of data to download. Once it’s finished click on the Ok button. Now
you’re free to explore the contents of the jhomenet-package sub-project.

But checking out the jhomemet-commons sub-project really won’t get you very
far as it’s only a piece to the larger puzzle. You’ll also need to check out the
jhomenet-ui and the jhomenet-server sub-projects by following similar steps that I
just outlined.

Once you have all three sub-projects checked out onto your workstation you’re
now ready to begin developing. To start the Ant build.xml file that’s included

jHomeNet User Manual Page 32 of 42
Version 0.5.1

with the jhomenet-server sub-package actually can take care of building all three
sub-projects using a single call. This is quite helpful because you don’t need to
go into each sub-project and compile the projects separately, then copy the
newly built Jar file into one or more of the dependent sub-projects and then build
that sub-project and so on (remember, the jhomenet-ui sub-project depends on
the jhomenet-commons package, and the jhomenet-server package depends on
both the jhomenet-commons package and the jhomenet-ui package). However,
in order to do this you need to edit the included build.properties file in the
jhomenet-server root folder. In particular, open the file in your favorite text editor
and scroll down to the jHomeNet suite full-build dependency properties
section towards the bottom of the file. You’ll need to edit the commons-

package.dir and ui-package.dir values to point to your actual jhomenet-
commons and jhomenet-ui sub-project locations.

Depending on whether or not you’ve also checked out the jhomenet-client
package you’ll also want to set the client-package.build value to either true or
false (and the client-package.dir values). This controls whether the jhomenet-
client package is built. If this is set to true and you don’t have the jhomenet-
client package checked out the build will fail. Once you’ve made these changes
you should now be ready to begin compiling.

You can compile the full jHomeNet suite by typing at the command line in the
jhomenet-server root directory:

D:\workspace\jhomenet-server>ant build-suite

This of course assumes that you have Apache Ant properly installed and
configured. This Ant call will build the jhomenet-commons, jhomenet-ui, and the
jhomenet-server sub-projects. It will also create a Windows batch
(server_dev.bat) file that you can use to run the newly compiled source files.
Once the compilation is complete and now errors were reported you can start the
development server by type server_dev at the command line.

And that should be it for getting you up and developing.

Section 7.2 – Other Issues
There are times when you may want to clear away all of the previously built Java
class files and start from scratch. Fortunately the jhomenet-server sub-project’s
build.xml file includes a task that does just this. At the command line you can
run the following:

D:\workspace\jhomenet-server>ant build-clean-suite

This first cleans all of the build folders for the three sub-projects and then builds
the full jHomNet suite from scratch.

jHomeNet User Manual Page 33 of 42
Version 0.5.1

If you’re getting errors during compiling and it looks like either the jhomenet-
commons or jhomenet-ui Jar files don’t contain the correct API methods, it’s
possible that an older copy of the jhomenet-commons or jhomenet-ui Jar file is in
the jhomenet-server sub-project’s lib folder. This may especially happen
between releases when a sub-project’s version is incremented and the sub-
project’s Jar file changes (for example, from jhomenet-commons-0.5.2.jar to
jhomenet-commons-0.5.3.jar). Delete all the jhomenet-commons and jhomenet-
ui jar files and then run the build.xml file again. This should fix any compilation
issues.

jHomeNet User Manual Page 34 of 42
Version 0.5.1

Section 8 – FAQs

Section 8.1 –FAQs
When either compiling or running the application, because it’s still under active
development, errors may occur. Below is a list of possible errors a user might
receive.

Compiling and initializing database
The following error may be received while compiling the source and generating
the necessary database using the schemaexport Ant task.

This may mean that not all the properties defined in the SomeFile.hbm.xml file
are present in the actual Java file. For example, if the primary key ID is defined in
the hbm file but not in the Java file (along with the appropriate getter/setter
methods), then this error will result.

Schema text failed: Error reading resource: com/foo /SomeFile.hbm.xml

jHomeNet User Manual Page 35 of 42
Version 0.5.1

Section 9 – Sample Configuration Files
This section contains some sample configuration files. The most up-to-date
copies are found in the respective Subversion repository.

Section 9.1 – server.cfg.xml
Sample server.cfg.xml configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<!-- == ==== -->
<!-- jHomenet server configuration file. -->
<!-- == ==== -->
<jhomenet-config>

 <!-- === ================= -->
 <!-- Startup configuration information. -->
 <!-- -->
 <!-- Known nodes include: -->
 <!-- console : defines status of console view at startup -->
 <!-- Known attributes include: -->
 <!-- display : define the type -->
 <!-- Known display values include: -->
 <!-- true/false : true for console startup, false for GUI -->
 <!-- === ================= -->
 <startup-config>
 <console display="false" />
 <hardware-polling start="false" />
 </startup-config>

 <!-- === ================= -->
 <!-- Hardware configuration definition. If nothing is defined, it -->
 <!-- defaults to an XML configuration using hardwa re.cfg.xml as -->
 <!-- the hardware configuration filename. -->
 <!-- -->
 <!-- Known attributes include: -->
 <!-- type : define the type (see below) -->
 <!-- filename : for XML or TXT based configuration s only -->
 <!-- Known hardware configuration types include: -->
 <!-- XML : For XML based hardware configuration -->
 <!-- TXT : For TXT based hardware configuration- ->
 <!-- (not yet developed) -->
 <!-- hibernate : For Hibernate based hardware conf iguration -->
 <!-- (not yet developed) -->
 <!-- === ================= -->
 <hardware-config type="XML" filename="hardware_tes t.cfg.xml" />

 <!-- === ====== -->
 <!-- User authentication configuration -->
 <!-- === ====== -->
 <authentication-config>
 <type>simple</type>
 </authentication-config>

 <!-- === ====== -->
 <!-- Network configuration -->
 <!-- === ====== -->
 <network-config>
 <firewall-enabled>false</firewall-enabled>
 </network-config>

 <!-- === ====== -->
 <!-- Work queue configuration -->
 <!-- === ====== -->
 <workqueue-config>
 <threadsize>5</threadsize>
 </workqueue-config>

jHomeNet User Manual Page 36 of 42
Version 0.5.1

</jhomenet-config>

 Section 9.2 – hardware.cfg.xml
Sample hardware.cfg.xml configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<!--
 jHomenet server hardware configuration file

 Use this file to define and configure jHomenet ser ver hardware properties.
 This includes:

 1) Hardware container manager definitions
 o hardware container manager configuration filenam e (optional)
 2) Hardware definitions including the following pr operties:
 o hardware classname (required)
 o description (optional)
 o icon filename (optional)
 o compatible driver hardware (optional)

 This file is parsed at the server start and any ha rdware not present in this
 configuration file will not be available to the se rver.

 Id: $Id: hardware.cfg.xml 1078 2005-12-21 22:58:45 Z dhirwinjr $
-->

<hardware-configuration>

 <!-- === =========== -->
 <!-- Define the available hardware container loade rs -->
 <!-- classnames. -->
 <!-- === =========== -->
 <hardware-container-loader
 classname="jhomenet.server.hw.driver.onewire.OneW ireContainerLoader" />
 <hardware-container-loader
 classname="jhomenet.server.hw.driver.X10.X10Conta inerLoader" />

 <!-- === ================= -->
 <!-- Define the hardware persistence layer classna me -->
 <!-- -->
 <!-- Known hardware persistence types include: -->
 <!-- XML : For XML based hardware persistence -->
 <!-- hibernate : For Hibernate based hardware pers istence -->
 <!-- === ================= -->
 <hardware-persistence-layer type="hibernate" />

 <!-- === ================= -->
 <!-- Define the hardware data persistence layer. -->
 <!-- -->
 <!-- Known attributes include: -->
 <!-- type : define the type (see below) -->
 <!-- filename : for XML or TXT based configuration s only -->
 <!-- Known hardware data persistence types include : -->
 <!-- XML : For XML based hardware data persiste nce -->
 <!-- TXT : For text based hardware data persiste nce -->
 <!-- hibernate : For Hibernate based hardware data persistence -->
 <!-- === ================= -->
 <data-persistence-layer type="hibernate" />

 <!-- === =========== -->
 <!-- Sensor hardware definitions -->
 <!-- === =========== -->

 <!-- Door sensor -->
 <!--
 <hardware

jHomeNet User Manual Page 37 of 42
Version 0.5.1

 classname="jhomenet.server.hw.sensor.DoorSensor"
 description="Door sensor"
 icon-filename="contact.png"
 compatible-driver-hardware="DS2406">
 </hardware>

-->

 <!-- Humidity sensor -->
 <!--
 <hardware
 classname="jhomenet.server.hw.sensor.HumiditySens or"
 description="Humidity sensor"
 icon-filename=""
 compatible-driver-hardware="">
 </hardware>
 -->

 <!-- Light sensor -->
 <hardware classname="jhomenet.server.hw.sensor.Lig htSensor"
 description="Light sensor" >
 <compatible-driver-hardware type="DS2438"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eVoltageDriver">
 </compatible-driver-hardware>
 </hardware>

 <!-- Lightning sensor -->
 <hardware classname="jhomenet.server.hw.sensor.Lig htningSensor"
 description="Lightning sensor" >
 <compatible-driver-hardware type="DS2423"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eCountDriver">
 </compatible-driver-hardware>
 </hardware>

 <!-- Barometric pressure sensor -->
 <!--
 <hardware
 classname="jhomenet.server.hw.sensor.BarometricSe nsor"
 description="Barometric pressure sensor"
 icon-filename=""
 compatible-driver-hardware="">
 </hardware>
 -->

 <!-- Rain sensor -->
 <!--
 <hardware
 classname="jhomenet.server.hw.sensor.RainSensor"
 description="Rain sensor"
 icon-filename=""
 compatible-driver-hardware="DS2423">
 </hardware>
 -->

 <!-- Temperature sensor -->
 <hardware classname="jhomenet.server.hw.sensor.Tem pSensor"
 description="Temperature sensor" >
 <compatible-driver-hardware type="DS1822"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eTempDriver">
 </compatible-driver-hardware>
 <compatible-driver-hardware type="DS18B20"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eTempDriver">
 </compatible-driver-hardware>
 <compatible-driver-hardware type="DS18S20"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eTempDriver">
 </compatible-driver-hardware>
 <compatible-driver-hardware type="DS1920"

jHomeNet User Manual Page 38 of 42
Version 0.5.1

 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eTempDriver">
 </compatible-driver-hardware>
 </hardware>

 <!-- Wind direction sensor -->
 <hardware classname="jhomenet.server.hw.sensor.Win dDirectionSensor"
 description="Wind direction sensor">
 <compatible-driver-hardware type="DS2450"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eWindDirectionDriver">
 </compatible-driver-hardware>
 </hardware>

 <!-- Wind speed sensor -->
 <hardware classname="jhomenet.server.hw.sensor.Win dSpeedSensor"
 description="Wind speed sensor" >
 <compatible-driver-hardware type="DS2423"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eWindSpeedDriver">
 </compatible-driver-hardware>
 </hardware>

 <!-- HVAC monitor sensor -->
 <hardware classname="jhomenet.server.hw.sensor.Hva cSensor"
 description="HVAC sensor" >
 <compatible-driver-hardware type="DS2450"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eADDriver">
 </compatible-driver-hardware>
 </hardware>

 <!-- === =========== -->
 <!-- Device hardware definitions -->
 <!-- === =========== -->

 <!-- Switch device -->
 <hardware classname="jhomenet.commons.hw.device.Sw itchDevice"
 description="Light switch device" >
 <compatible-driver-hardware type="SWITCH"
 driver-classname="jhomenet.server.hw.driver.X10. X10SwitchDriver">
 </compatible-driver-hardware>
 <compatible-driver-hardware type="DS2405"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eSwitchDriver">
 </compatible-driver-hardware>
 <compatible-driver-hardware type="DS2406"
 driver-
classname="jhomenet.server.hw.driver.onewire.OneWir eTwoChannelSwitchDriver">
 </compatible-driver-hardware>
 </hardware>

</hardware-configuration>

Section 9.3 – x10.conf
Sample X10.conf configuration file:

#-- --------------------
X10 configuration file
Written by: David Irwin (jhomenet at gmail dot co m)
Last updated: July 23, 2007
#-- --------------------

#-- --------------------
Define X-10 network configuration details.
#-- --------------------
port = COM1

jHomeNet User Manual Page 39 of 42
Version 0.5.1

Section 9.4 – x10-containers.cfg.txtf
Sample X10 containers configuration file:
#-- --------------------
X10 container configuration file
Written by: David Irwin (jhomenet at gmail dot co m)
Last updated: July 23, 2007
#-- --------------------

#-- --------------------
Define the X-10 hardware. Because the current imp lementation
of the X-10 network doesn't support scanning for hardware
on startup, the hardware must be known before han d. This file
serves as the hardware setup.

Each hardware object should be defined on a singl e line in this
configuration file. The exact format is as follow s:
hardware-<identifier> = <hardware address>:<hardw are type>
where
<identifier>: this can be any unique identifier ; this is
used internally so it does not need to
correspond to anything in particular
<hardware address>: this is the hardware addre ss of the X10
device in (<house code>,<device code>) form at
(e.g. A,1)
<hardware type>: this determines the hardware type; current
options include SWITCH. See the server
documentation for more information.

See the JavaDocs for the different types of hardw are.
#-- --------------------
hardware-001 = A,1:SWITCH

Section 9.5 – sensor-responsive.cfg.xml
Sample sensor responsive configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<!-- == ==== -->
<!-- jHomenet sensor responsive configuration file. -->
<!-- == ==== -->
<responsive-config>
 <!-- The persistence type -->
 <property name="persistence.type">hibernate</prope rty>

 <!-- Email configuration -->
 <property name="email.name">Dave Irwin</property>
 <property name="email.hostname">smtp.sbcglobal.yah oo.com</property>
 <property name="email.username">dhirwin@sbcglobal. net"</property>
 <property name="email.sender">dhirwin@sbcglobal.ne t"</property>
 <property name="email.replyto">dhirwin@sbcglobal.n et</property>
</responsive-config>

Section 9.6 – hibernate.cfg.xml
Sample Hibernate configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN "
 "http://hibernate.sourceforge.net/hibernate-confi guration-3.0.dtd">

<hibernate-configuration>
 <session-factory>

 <!-- Settings for a MySQL database. -->

jHomeNet User Manual Page 40 of 42
Version 0.5.1

 <property
name="hibernate.dialect">org.hibernate.dialect.MySQ LDialect</property>
 <property
name="hibernate.connection.driver_class">com.mysql. jdbc.Driver</property>
 <property
name="hibernate.connection.url">jdbc:mysql://localh ost/jhomenet_db</property>
 <!--
 <property name="hibernate.connection.username">ro ot</property>
 <property name="hibernate.connection.password">ek </property>
 -->
 <property name="hibernate.connection.username">ro ot</property>
 <property name="hibernate.connection.password">xt nm21a</property>

 <!-- Use the Hibernate built-in pool for tests. - ->
 <property name="connection.pool_size">3</pr operty>

 <!-- Enable auto-commit mode for special ca ses (integration testing) -->
 <!-- <property name="connection.autocommit" >true</property> -->

 <!-- Disable the second-level cache -->
 <property
name="cache.provider_class">org.hibernate.cache.NoC acheProvider</property>
 <property name="cache.use_query_cache">fals e</property>
 <property name="cache.use_minimal_puts">fal se</property>

 <!-- In eager fetching, only join three tab les deep if joins are used -->
 <property name="max_fetch_depth">3</propert y>

 <!-- Print SQL to stdout, format it nicely -->
 <property name="show_sql">true</property>
 <property name="format_sql">true</property>
 <property name="use_sql_comments">true</pro perty>

 <!-- Drop and then re-create schema on Sess ionFactory build, for testing -->
 <!-- <property name="hbm2ddl.auto">create</ property> -->

 <!-- Use thread-bound persistence context p ropagation, scoped to the transaction
-->
 <property name="current_session_context_cla ss">thread</property>

 <!-- == ========== -->
 <!-- jHomeNet mapping files -->
 <!-- == ========== -->

 <!-- User type definitions (these need to be befo re all other mappings) --
>
 <mapping
resource="jhomenet/commons/persistence/hibernate/Us erTypes.hbm.xml" />

 <!-- jHomeNet configuration related mapping files -->
 <mapping resource="jhomenet/server/ServerDatabase Version.hbm.xml" />
 <mapping
resource="jhomenet/commons/weather/WeatherGatewayCo nnectionInfo.hbm.xml" />
 <mapping resource="jhomenet/commons/auth/User.hbm .xml" />
 <mapping resource="jhomenet/commons/event/Event.h bm.xml" />

 <!-- jHomeNet hardware related mapping files -->
 <mapping resource="jhomenet/server/hw/Hardware.hb m.xml" />
 <mapping resource="jhomenet/commons/hw/data/Abstr actHardwareData.hbm.xml"
/>

 <!-- jHomeNet sensor response related mapping fil es -->
 <mapping
resource="jhomenet/commons/responsive/condition/Con dition.hbm.xml" />
 <mapping resource="jhomenet/commons/responsive/re sponse/Response.hbm.xml"
/>
 <mapping
resource="jhomenet/commons/responsive/trigger/Trigg erWrapper.hbm.xml" />

 </session-factory>
</hibernate-configuration>

jHomeNet User Manual Page 41 of 42
Version 0.5.1

jHomeNet User Manual Page 42 of 42
Version 0.5.1

Resources & Links

Java

[http://java.sun.com] – Official home of Java. Free downloads of Sun
Microsystem’s JRE and JDK.

[http://swinglabs.org/index.jsp] – SwingLabs provides an excellent source of Java
UI tools incuding the SwingX library heavily used in the jHomeNet UI library.

1-Wire information

[http://www.maxim-ic.com/1-Wire.cfm] – Official home of 1-Wire network. Good
resource for 1-wire hardware datasheets and application notes.

[http://www.1wire.org] – Excellent resource for 1-Wire information including
installation suggestions and details.

Development Tools

[http://www.eclipse.org] – The Eclipse IDE used to assist in most of the software
development.

[http://www.hibernate.org] – The Hibernate O/RM persistence tool.

[http://jpf.sourceforge.net] – The Java Plugin Framework open source project
website.

jHomeNet User Manual Page 43 of 42
Version 0.5.1

Appendix A – jHomenet Ant build

Build configuration
Most of the jHomenet build parameters are not actually set in the build.xml
file. Instead, most build parameters are set in the included
default.properties file. Here the user can define the project name, version
information, and all the project folders including all the build and distribution
filenames and folders.

Ant tasks
A few of the defined Ant tasks require additional Jar files not included in the
default Ant distribution.

To run any of the defined Ant tasks, from the root jHomenet directory type at a
command prompt:

The default task is build . In most instances when developing the server, a user
should only have to type ant at the command line.

A description of the currently defined tasks are listed below.

prepare
Creates the necessary directories.

clean-classes
This task deletes all the files and folders in the build/classes and dist folders.

init-build
This task is used to initialize the build script including creating all the necessary
build folders and copying the library and configuration files. This task must be
called prior to most other defined tasks.

build
This is the default task and is responsible for building the source code and
putting the compiled class files in the /build/classes folder.

This task depends on the prepare and init-build tasks. This is the default
task.

build-clean

ant [task name]

jHomeNet User Manual Page 44 of 42
Version 0.5.1

Same as the build task except that it deletes all the existing files in the
/build/classes file (including class and any configuration files). Note: the
actual configuration files are stored in the /resources/conf folder.

This task depends on the prepare , clean-classes , and build task.

init-db
This task is used to create the database using Hibernate’s schema export tool
(dmb2dll). This requires that the Hibernate3.jar file is located in the
/resources/lib directory. The Hibernate Jar file is included with the jHomenet
distribution.

This task depends on the build task.

jar
This task creates a distribution folder (dist) and creates two Jar files in this
folder. One Jar file contains all the compiled class files and the second Jar file
contains all the necessary library files.

This task depends on the clean-all and build tasks.

javadocs
This task calls the java-docs tool to create the Java documentation from the
source files. The files are created in the /docs/api folder.

This task depends on the prepare task.

package
This task creates the distribution folder and copies all the necessary components
for an official distribution. This includes creating and copying the API
documentation, copying all the source files, copying all the configuration and
image files, and copy all the necessary library files.

This task depends on the clean-all , build , and javadocs tasks.

package-zip
This task zips the contents of the distribution folder (/dist/jhomenet-
server-[versionid]) and creates a Zip file (/dist/jhomenet-server-
[versionid].zip).

This task depends on the package task.

jHomeNet User Manual Page 45 of 42
Version 0.5.1

Appendix B – Acronyms & Other Information

Acronyms

API Application Programming Interface

CLI Command Line Interface
CRUD Create, Read, Update, Delete

DAO Data Access Object

IDE Integrated Development Environment

JDK Java Development Kit
JPF Java Plugin Framework
JRE Java Runtime Environment

O/RM Object/Relational Mapping

POJO Plain Old Java Object

SDK Software Development Kit
SRP Sample Responsive Programming

